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V Abstract A

The numerical solution of discrete approximations to the first bi-

harmonic boundary value problem in rectangular domains is studied. Several

finite difference schemes are compared and a family of new fast algorithms

for the solution of the discrete systems is developed. These methods

are optimal, having a theoretical computational complexity of O(N )

arithmetic operations and requiring N+O(N) storage locations when

solving the problem on an N by N grid. Several practical computer

implementations of the algorithm are discussed and compared. These im-
2 a N2

plementations require 2 + bNlogN arithmetic operations with b<<a.

The algorithms take full advantage of vector or parallel computers and

can also be used to solve a sequence of problems efficiently. A new

fast direct method for the biharmonic problem on a disk is also developed.

It is shown how the new method of solution is related to the associated

eigenvalue problem. The results of extensive numerical tests and com-

parisons are included throughout the dissertation.

It is believed that the material presented provides a good founda-

tion for practical computer implementations and that the numerical solu-

tion of the biharmonic equation in rectangular domains from now on, will

be considered no more difficult than Poisson's equation.
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CHAPTER I

THE CONTINUOUS PROBLEM

Let Q be an open set in R2 with boundary 3Q. Consider the

following problem:

A2u(x,y) = f(x,y) (x,y) C 0

u(x,y) = g(x,y) (x,y) E (1.1)

u n(x,y) = h(x,y) (x,y) 6 30

where u n denotes the exterior normal derivative on M2.

This thesis will develop efficient numerical methods for the above

problem when 0 is a rectangle or a circular disk. The algorithms are

optimal, requiring O(N 2) arithmetic operations and O(N2 ) storage

locations for computing an approximate solution at N2 discrete grid-

points.

In this Chapter some physical problems that lead to equations like

(1.1) will be described together with a few mathematical properties rele-

vant for the construction of numerical methods. Discrete approximations

to (1.1) are discussed in Chapter II, and the theory behind the numerical

algorithm for the rectangular domain is developed in Chapter III. Chap-

ter IV discusses the implementation of numerical algorithms and the de-

sign of computer programs. Some numerical results for a few applications

of the algorithms to some difficult problems are presented in Chapter V.

Equation (1.1) is called the (first) Dirichlet boundary value pro-

blem for the biharmonic operator

S 4 4 - + 2 2+ (1.2)
x x2 y ay
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and this problem arises in several fields of applied mathematics. Clas-

sical examples occur in elasticity theory and in the theory of fluid

mechanics.

In linear elasticity u(x,y) can represent the Airy stress function

or as in the theory of thin plates, the vertical displacement due to an

external force. In the latter case equation (1.1) represents a "clamped

plate" where f is the external load. Another closely related case is

that of a "supported plate" where the boundary conditions in (1.1) are

replaced by

u(x,y) = g(x,y) (x,y) C sl
(1.3)

OAu(x,y) + (1-)Unn (x,y) = h(x,y) (x,y) E 30

where unn is the second normal derivative and a is a material constant

called Poisson's ratio.

When S is a polygon, this is equivalent to a problem (with data

depending on a) of the form:

- Av = f in 0

v = - h on 32 (1.4)
- Au = v in 0

U =  
on 30

where v = - Au has been introduced. The original fourth order equation

has been split into two Poisson problems. There exist many reliable com-

puter programs that can be used to solve (1.4) in an efficient way both

for special geometries (Swarztrauber and Sweet [1975] ), and in more general

domains (Proskurowski [1978]). It is important to notice that the only

difference between (1.1) and (1.4) is that different boundary data have
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been specified.

The theory of thin plates allowing large vertical displacements,

leads to a coupled pair of nonlinear equations known as von Kgrm~ns equa-

tions:

A2u : [u,v] + f in Q

u g on 9Q

un =h I  on a(

A2v = - u in Q.

v = g 2  on ao

vn = h2  on 3Q

where

[u, a a2u 32v + 2 u a 2 v  2 2u 2 v
y--x2 77 Xay;X5y

Here u represents the vertical displacement of the plate, v is the

Airy stress function and f is the external force on the plate. An

efficient method for solving linear problems involving the biharmonic

operator (with the appropriate boundary conditions) can be very valuable

in iterative methods for solving more difficult problems of this type.

References describing equations involving the biharmonic operator

in elasticity include Landau and Lifchitz [19701, Muskhelishvili [1963],

Sokolnikoff [1946], Kupradze [1965] and Kalandiya [1975]. More recent

texts on finite elements methods, Strang and Fix 11973], Zienkiewicz

1977] and Ciarlet [1978] provide additional information.

In fluid mechanics, equation (1.1) describes the streamfunction

u(x,y) of an incompressible two-dimensional creeping flow (Reynolds

number zero). Efficient numerical methods for this problem can also be
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used when trying to solve the nonlinear Navier Stokes equation describing

incompressible flow at nonzero Reynolds number. The biharmonic operator

appears linearly in this equation when using the streamfunction formula-

tion. For more details on fluid mechanics applications see Landau and

Lifchitz [1959] and Temam [1977].

The remaining part of this Chapter will summarize various mathema-

tical results for the biharmonic operator A2 and equation (1.1).

i) Variational forms.

Two distinct bilinear forms can be associated with problem (1.1)

(Agmon [1965, p. 150]):

al(u,v) = Av dx dy

ara 2u 32u,,a2 V 2 ) 2u 2 v1 dx dya2(uv) = J[( u 2x 2 - +4ax ay ax
u2~ ~ Q ax ay ax ay aaaa~

The weak form of (1.1) corresponding to the clamped plate problem in

elasticity is

a3(uv) = f(v) V v 0

where

a 3(u1v) = - al(u,v) + " a2(u,v)

representing the strain energy of the plate, and

f(v) = ff v dx dy

For additional material see Ciarlet .1977]

ii) Existence and Uniqueness.

If f c L2(S), g e H3/ 2(a2), h c H1/ 2(a(2) and as is sufficiently

smooth, then there exists a unique (weak) solution u c H2 (o) of
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problem (1.1). (Lions and Magenes [1972].)

iii) Simplification of equation (1.1).

Assuming that (1.4) can be solved, there is no loss of generality

to take f = g = 0 when discussing equation (1.1). This follows by

letting u = u1 + u2 where u1  solves (1.4). The equation for u2  is

then of the desired form.

iv) The biharmonic operator under a conformal coordinate transformation.

Assume that s : C - C maps a region 0z in the z-plane confor-

mally onto a region S1w in the w-plane, and let Az and Aw denote

the Laplace operators in the two regions. Then

2 u(z) Is'(z)12 Aw(Is'(S-1(w))I AwU(s l(w))) (1.6)

This transformation is useful when the map s from a simple (computa-

tional) domain az to the (physical) domain a w is known or can be com-

puted. References using conformal mappinq and complex variable techni-

ques include Muskhelishvili [1953] and Kantorovich and Krylov [1958].

v) Biharmonic functions.

Any function u(x,y) satisfying equation (1.1) with f = 0 is

called biharmonic. Any biharmonic function u can be written

u(z) = Re[iz (z)+ X(Z

where 0 and X are analytic functions. Conversely, given 0 and X

analytic, the above expression defines a biharmonic function u. This

representation is due to Goursat [1898]. If Q is starshaped and u

is biharmonic, then

u = r 2 v + w (1.7)



-6-

where v and w are harmonic functions and r2 = x2 + y2. (Tychonoff

and Samarski [1959, p. 388], see also Kalandiya [1975].)

vi) Explicit solution of (1.1) in a disk.

Assume that f = 0 in (1.1) and that S is a disk of radius R.

Then

u(rO) yI (R 2_r 2 )2 f 2Tr g(R,a)(R-rcos(a-e)) da

7wR (R2+r2 _2Rrcos(a_-)) 2

(1.8)

I f 2 Tr h(R) d
R 2+r 2-2Rrcos(a-)

(Tychonoff and Samarski [1959, p. 389].)

vii) Majorization of biharmonic functions in terms of the boundary data.

Despite the close connection between harmonic and biharmonic func-

tions there is no maximum principle for biharmonic functions. The fol-

lowing result is due to Miranda [1948.

Assume f = g = 0 in (1.1), if the boundary ao is sufficiently

smooth and u has continuous first partials in 9, then

ju(x,y)j < (2 (x,y) maxjh(x,y)j

where A= -1 in 2, 0 on ag.

Extensions of this result to the case where g is nonzero are given

by Rosser [1980] for circular and rectangular domains.
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Another type of a priori inequality is given by

f 2dxdy <i 1 f(A2 U) 2dxdy u 22 ~ uds + a3 f u ds u 2 4uds

Here ut is the tangential derivative and al. a2, a3 and 4  are (in

principle) computable constants depending on the domain. This inequality

holds for any sufficiently smooth function. (Sigillioto [1976]).

viii) The coupled equation approach.

Consider the following algorithm for solving (1.1). Let X0= 0,

then for n = 0,1,2,..

- AVn = f in Q

v = n on M

- Aun = vn in

n
u = g on aQ

nl n +P(2u n - h) 0 < p < 2/p

where r 2 1
max f Iv n 2 d s dxdy

veH2 (S) () HO(Q)

v €0

For sufficiently smooth data it can be proved that

lim{un,vn} = {u, - Au}
n

see MacLaurin [1974] or Glowinski-Lions-Tremolieres [1976, Chap. 4].

ix) Relation between un and Au on 30

Let v E-Au and assume that X vla is known. Equation (1.1)

I ail
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can then be solved as two decoupled problems. Let A denote the linear

operator mapping X to un. Glowinski and Plronneau [1979] proved that

A is a symmetric, strongly elliptic operator mapping H'f (90) to OI(am).

This is the basis for the mixed finite element method they propose for

problem (1.1).

I
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CHAPTER II

THE DISCRETE APPROXIMATION

This Chapter will discuss discrete approximations to the continuous

biharmonic problem. The Chapter consists of four sections. First, a few

possible finite difference schemes will be introduced. Necessary modifi-

cations at gridpoints near the boundary are discussed and some properties

of the resulting linear systems of equations are mentioned.

The second part summarizes known theoretical results on the conver-

gence of the finite difference solution to that of the continuous problem.

Several conflicting results can be found in thp literature and the re-

view of this material is intended to clarify the knowledge of this sub-

ject.

The algorithms proposed in this thesis make it feasible to solve

discrete approximations on much finer grids than previous methods could

handle using limited computer resources. This made it possible to perform

fairly extensive tests, solving a class of test problems over a wide range

of grids in order to numerically test the theoretical convergence rates

and compare so,,e of the proposed approximations. The third section of the

Chapter contains a summary of the calculations performed and some of the

resulting conclusions.

The last section contains a short discussion of previously proposed

methods for solving discrete approximations to the biharmonic equation.

2.1 Finite difference schemes.

Most finite difference schemes proposed for the biharmonic equation

have only been applied to regions made up of unions of rectangles. For

more general regions Bramble [1966] proposed an elegant scheme which
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employs the 13-point stencil. However, due to the difficulties in hand-

ling the difference approximation close to a curved boundary, more general

domains should usually be treated within the framework of the finite

element method. The study of finite difference schemes and the efficient

numerical solution of the resulting equations derived from regular geo-

metries is still useful for at least two reasons. There are several im-

portant problems where the geometry is regular or where it is convenient

to make a coordinate transformation from the physical region to a compu-

tational domain with a simple geometry. In addition, efficient numerical

methods for regular grids can contribute to the development of fast methods

for solving finite element equations resulting from triangulations that

are regular in the interior of a more general region. This line of de-

velopment is already very evident in the work of Proskurowski and Widlund

[1976], [1980] on second order elliptic equations.

The following discussion will be restricted to a rectangular region

R. Let R be covered by a uniform grid such that the boundary of R

falls on gridlines. This is illustrated in Figure 2.1, which also de-

fines three disjoint sets of gridpoints , Rh, Rh and Ah:

* *

* + + + *

h

Figure 2.1. The uniform discretization of R.

i 4S
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Rh = {+1 , the set of all gridpoints having only interior points as neigh-

bors.

Rh = {*} , the set of all interior gridpoints having at least one neigh-

bor on the boundary.

Rh = {'}  the set of boundary gridpoints.

The finite difference approximations are most conveniently described us-

ing stencils. For example,

1-41 u ulh2 '4 4 u
A u 1 -4 1 u = (u + + Oh 4 ) (2.1)

1

defines the usual 5-point approximation to the Laplace operator and shows

that this approximation has a local truncation error of order h2.

(Di = a , i = 1 or 2). The classical 13-point approximation for thei

biharmonic operator is most easily derived by applying the above 5-point

operator twice:

1

2 -8 2

A 3u A(su) -11 -8 20 -8 1 u=

2 -8 2

1

2 6 4 2 2 4 6) O~4

A2u +h-(D6 + D4D2 + DID2 + D6)u + )(h 4 (2.2)

(The operator A5(A5 u) is formed by first forming A5(A u) and

then substituting for eu using 2.1). Unlike the discrete Laplace opera-

tor which can be applied to all interior gridpoints P E Rh URh, this
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operator is only well defined on the points P c Rh. Two alternative

approximations of A u(P) will be considered for P E Rh.

i) Quadratic extrapolation.

Use the normal derivative boundary condition at the point Q e Rh
3

nearest P E Rh to formally get a local O(h) accurate extrapolated

value at the "missing" (exterior) point in the stencil. This results in

a stencil of the form

1

2 -8 2
2U(P) = 1 -8 21 -8 1 u(P) + 2hu(Q) = A2u(p) + 0(h-I )

2 -8 2

1 (2.3)

when applied to a point P E Rh near the left boundary. Notice that u

always denotes the exterior normal derivative evaluated at the boundary.

A similar procedure (eliminating two exterior points) when P E Rh is

a cornerpoint results in a weight of 22 at the center point of the sten-

cil.

ii) Cubic extrapolation.

Using the same approach as in i), but performing a cubic line-extra-

polation results in an O(h 4 ) accurate approximation of the "missing"

point. The discrete biharmonic operator becomes

1

2 -8 2

A2U(P) 1ih-i -8 23 -8.5 1 u(P) + 3hUn(Q) - u(Q) = 2

1 (2.4)
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at a point P E Rh near the left boundary. Notice that this leads to an

unsymmetric coefficient matrix.

Gupta [19751 considered two families of boundary approximations of

the above form, but depending on integer parameters indicating which in-

terior points to use in the extrapolation. His iterative method converged

faster if points further away from the boundary were chosen. This clearly

results in larger truncation errors. Since the algorithms in this thesis

can handle the approximations that furnish the smallest truncation errors,

only these two choices will be considered. (The quadratic and cubic ex-

trapolation near the boundary is equivalent to the schemes p = 1 and

p = 2, q = 1 respectively in the notation of the above author.)

Glowinski [1973] made the observation that the 13-point finite dif-

ference scheme combined with quadratic extrapolation near the boundary

is equivalent to solving the biharmonic equation using a mixed finite

element method and piecewise linear elements in the triangulation shown

in Figure 2.2.

Figure 2.2. Finite element triangulation corresponding

to the 13-point difference stencil.
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There are many alternative finite difference approximations that can

be derived for the biharmonic operator. By rotating the coordinate sys-

tem u/4 the approximation

h 2i (02 lh 4 2 2 4h 4

S -4 u = Au + 1 + 6DID 2 + D2)u + O(h) (2.5)

to the Laplace operator follows from the 5-point stencil given earlier.

From this operator an alternative 13-point approximation is obtained:

1 2 1

-8 -8
A2 u Hx(AxU) = 2 20 2 u = A2u

4h -8 -8

2 1

+ I  +2 4 6 4
6- ( 1 +7 1 D2+ 1 D2 +D2)+ h)(26

This stencil is not as convenient since it depends on twice as many points

at a distance 2h from the center point. Combining the two approxima-

tions to the Laplacian results in a 17-point approximation.

1 1

1 -4 -2 -4 1
7 A(A5 ) = (A) = 21 -2 16 -2 u (2.7)

x( 5u a5x 2h 1 -4 -2 -4 1

1 1

A2U+h2 (6+4 4 02 + 4 + D )u + O(h4
21 2 614 2 62

= A u +---(D + 4O1 O2ID2  D+ 2 u0h

By taking suitable linear combinations of the above stencils for the bi-

harmonic operator it is possible to derive approximations that can be
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used to construct higher order schemes. For example

(1 A2+2A2 A2 +h2 u+ 3 u+ 0(h) (2.8)

Combining this with the idea of also forming differences on the right

hand side of the equation (Mehrstellenverfahren, Collatz [1955]) yields

a locally fourth order accurate approximation that has been studied by

Zurmihl [1957]:

1 1 1

1 -2 -10 -2 1 1
1 1 -10 36 -10 1 u- 1 2 1 A2 u + 0(h 4 ) . (2.9)
h 1 -2 -10 -2 1 1

1 1 1

ZurmUhl derives rather complicated stencils that can be applied to points

P E Rh having local truncation error 0(h3). Based on the material in

this Chapter (Section 2.2 and 2.3) it is likely that less accurate approxi-

mations near the boundary would be sufficient.

It should be noticed that all the linear systems of equations de-

rived from the above stencils (ignoring the irregularity caused by the

special boundary approximations) can be efficiently solved using for ex-

ample the fast Fourier transform (Henrici [1979]).

The systems of linear equations derived from the finite difference

approximations discussed so far, are all positive definite with a condi-

tion number proportional to h"4 . Due to the special approximations used

for the points P E Rh, the matrices are often not symmetric, but they

can usually be considered as perturbed symmetric matrices.

The matrices do not possess property A (Young [1972]). Finite dif-

ference approximations of the biharmonic operator that lead to linear
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systems having property A have been considered by Tee 11963] and Tang

[1964) for rectangular and hexagonal meshes respectively. Proper treat-

ment of the points near the boundary remains a serious problem with these

schemes since inaccurate boundary approximations must be used in order

not to destroy the matrix structure. (These matrices have interesting

block properties; see Parter [1959], Chapter 14 of Young [1972], Buzbee,

Golub and Howell [1977].)

2.2 Discretization error estimates.

There exist very few papers in the literature discussing the global

discretization errors of the finite difference schemes presented in the

previous section. This is in contrast to the case of second order ellip-

tic problems where the theory is well understood. The main reason for

this is probably the fact that there is no maximum principle for higher

order equations, while the maximum principle valid both in the continu-

ous and discrete case for second order problems provides an important tool

for the analysis.

The first results proving that the 13-point approximation (2.2) con-

verges to the solution of the continuous problem, was given by Courant,

Friedrichs and Lewy [1928J. The main references for this section are

Bramble [1966] and ZlAmal [1967]. The more recent analysis by Gupta [1975]

is based on the above paper by ZlImal, but some of the discretization

error estimates given can be improved.

Let v denote a function defined on each gridpoint P(x,y) 6 R

(R = RhURuh U h) and extended by the value zero outside R. The fol-

lowing norms and notation will be used in this section:
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v (xy) = -(v(x + h,y) - v(x,y)) (2.10)

vx (X,y) = - (v(X,y) - vx(x - h,y))

and similarly for vy and v

11v 11 2 h2  z V(P)
2

P R

2 2 +lv 12 (2.11)
l1v I - lv ll + IIvx 11 + ivy .0

liv 11 liv 11o + 1,vx 11 + IIv l

The norms of the restriction of v to points P c Rh or P E Rh are

defined by:

2Iv h h v(P)2

h (2.12)

1iv 110OR h2  Ph PSRh

The norms containing the discrete derivatives are defined in a similar

way as above.

The following lemma holds for any mesh function v vanishing out-

side R.

Lemma 2.1 (Discrete a priori inequalities.)

(i) 1Iv 110 < c( IIvx 10 + Ilv yl )2

(ii) max Iv(P)l < cjlog h'l ( Ilvx I11 + ll)v 1)

(iii) 11v 11, <-  c(h 'l  2l I , + lI r l , h

hh

for some constant c independent of h.

This is proved in Bramble [19661, an alternative proof of (iii) is
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given by Kuttler [1971]

Lemma 2.2 (Extrapolation near the boundary).

Let v be any mesh function vanishing outside R. If the approxi-

mation defined by (2.2) and (2.3) is used, the following estimates hold:

)lv lR*+ h 3/2 livjIL < c h 3/2[h 5/2 11A2  O 2 R
'h q h 'h

< y 1 5 V 2 v 2  , + 1lA 3 v 11 )2
ii) 11v112 <_qc0h5  R* + Oh ORh

for some constant c independent of h.

Inequality i) can be found in Kuttler f1971], ii) is proved by Zlamal

[1967]. Inequality ii) also holds if A2  is replaced by A2  (2.4), it

can therefore be used to analyze the case where cubic extrapolation is

used near the boundary.

Let uh denote the solution to a finite difference approximation of

the first biharmonic boundary value problem using one of the discretizations

defined in the previous section. Let u be the continuous solution of

the problem and assume that u 6 C(6)(R). Lemma 2.1 and 2.2 can now be'

used to estimate the global discretization error.

-Theorem 2.1

Assume the 13-point operator A2  is used on R and let c de-
13

note some constant independent of h. Then

i) maxluh(P) - u(P)I< cilog h-
11 h2

PsR

ii) ilUh(P) - u(P)II: < c h2

Siii) Iuh(P) - u(P)1'2 < c h3/2

Noo- -
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iv) I1uh(P) - u(P)IO,R* < c h3

h

if the quadratic extrapolation scheme A 2  is used on R*, andq h

v) max Iuh(P) - u(P)I < c

PER

vi) max(I(uh(P) - u(P))xl + (uh(P) - u(P))y ) < c Ilog h 1 I h2

PER

vii) 11uh(P) - u(P)112 <c h2

if the cubic extrapolation scheme A is used on R.

Proof:
The local truncation error of 2 isOh2, while 2has local

A13  0(s ) q2Aq

truncation error 0(0 ) and A2 is 0(1) (see section 2.1). Using

this and i) of Lemma 2.2 gives iv). Combining this with ii) and iii) in

Lemma 2.1 gives i) and ii). Statement iii) and vii) follows from ii) of

Lemma 2.2. Using vii) and ii) of Lemma 2.1 gives vi). Finally, the dis-

crete Sobolev inequality (Sobolev [1940]) applied to vii) proves v).

Remarks:

i) The above results i) - iv) still hold in a more general region with

curved boundary using a suitable generalization of the quadratic extra-

polation scheme. (Bramble [1966], Zl.~mal [1967]).

ii) It is unsatisfactory that Lemma 2.1 and 2.2 involve specific dis-

cretizations. More general proofs would make it possible to estimate the

global discretization error of a given finite difference scheme from the

local truncation errors. Both theoretical and computational evidence make

it reasonable to believe that the lemmas hold for a wider class of approx-

imations.

I.
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iii) Notice that the error near the boundary estimated in iv), is O(h3),

an order of magnitude smaller than the overall error despite a local trun-

cation error of 0(h"1 ) when using A2 u(P) for PeR . Strang and Fixq

[1973, p. 202] discusses a similar phenomenon for second order equations.

iv) The only important difference between quadratic and cubic boundary

approximation is the estimates for the discrete second derivatives (iii)

and (vii). This can be significant in several applications where A u

represents an essential physical quantity. (See also section 2.3).

v) Gupta [1975] used the discrete Sobolev inequality on iii) and obtain-

ed the weaker result O(h 3/2) instead of i).

vi) Some of the estimates in Theorem 2.1 do not seem to be sharp, see the

numerical evidence in section 2.3.

vii) If u(k) is an eigenvector of the discrete biharmonic operator de-h
fined using quadratic extrapolation near the boundary, and X(k) is theh

corresponding eigenvalue, then

maxlu~k)(P) - u(k), cilog h 1  h2

P R

(k) - (k)< c h2
-4

provided the exact eigenfunction u(k) £ C This result is due to

Kuttler [1971].

2.3 Numerical study of discretization errors.

In this section the results of numerical calculations using the

finite difference methods from 2.1, are compared with the theoretical

results of 2.2. The new fast computer algorithms developed in Chapter

III and described in more detail in Chapter IV, make it possible to solve

problems for a wide range of grids. The asymptotic behavior of the
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discretization error as h tends to zero can then be investigated. The

10 testproblems listed in Appendix III were used. Scattered results for

several of these problems on coarse grids can be found in the literature

(see Appendix III). Each problem was solved in the unit square

0 < x,y < 1, using a uniform grid. The results will be presented in

tables like the one below.

Solution First derivative Second derivative

Max L2  Max L2  Max L2
R1  R2  R3  R4  R5  R6

where h1  and h2  specifies two different grids, and

maxlu(P) - uh (P)j
1og(PER 1

maxlu(P) - uh (P)I

PER h 2

log LI
2 2

If the discretization error behaves like

maxu(P) - uh()Icl h + c2 h + " (a2 > a,1 )

then R1 will represent a computed approximation to a, (assuming

C1h 1 >> c2h 
2 ). Define e(P) E u(P) - uh(P) for P E R.

Ri, i = 2,3,4,5,6 is then defined in the same way as R1  using the fol-

lowing norms:

R 2  : h[ E e(p) 2]

PER

R 3  max[jex(P)j , ley(P)I]

PER
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2 2
R4  :hyE (ex(P) + e (P)

R5  :max[Iexx(P) I eyy(P) , exy(P)I]
PER

Note that the discrete derivatives of the error e(P);

ex (P), e y(P), e xx(P), e yy(P) and e xy(P)

have been formed using centered (O(h2) accurate) differences. The same

norms will be used when considering the boundary layer P e Rh except that

the factor h is replaced by h in R2, R4, and R6.

Remark.

The discrete derivatives formed by centered differences of the com-

puted pointwise error in the solution have been computed. An alternative

would be to compare the finite difference approximations obtained from the

computed solution with the exact derivatives. The two methods give the

same information as long as Ri < 2. Since the discretization error due

to the finite difference approximation of the continuous problem is best

studied using the first method, only these results are presented.

First, the 13-point formula combined with quadratic extrapolation will

be considered. Problem 1 is solved exactly by the method, results for

problems 2, 7 and 10 are given in Figure 2.3.
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Solution First derivative Second derivative

Problem 2 Max L2  Max L2  Max L2

0.1 / 0.05 1.96 1.97 1.37 1.74 1.09 1.58

0.05 / 0.025 1,98 1.99 1.71 1.87 1.02 1.72

0.025 / 0.0125 2.00 2.00 1.85 1.94 1.00 1.8o

0.0125 / 0.00625 2.00 2.00 1.92 1.97 1.00 1.84

Problem 7

0.1 / 0.05 1.95 1.95 1.25 1.69 0.95 1.45

0.05 / 0.025 1.98 1.99 1.61 1.85 0.97 1.64

0.025 / 0.0125 2.00 2.00 1.77 1.92 0.98 1.74

0.0125 / 0.00625 2.00 2.00 1.86 1.96 0.99 1.80

Problem 10 ,
0.1ol 0.05 1.95 1.97 1.38 1.74 1.02 1.56

0.05 / 0.025 1.99 2.00 1.70 1.87 0.99 1.70

0.025 / 0.0125 2.00 2.00 1.83 1.93 0.99 1.78

0.0125 / 0.00625 2.00 2.00 1.89 1.97 1.00 1.83

Figure 2.3. Computed discretization error estimates for

problem 2, 7 and 10 using the quadratic

boundary approximation.

None of the other test problems had convergence rates significantly

slower than the ones listed above. Improved rates were observed for

problems 4, 5 and 9 where R5 z R6 z 2. Figure 2.4 gives the rate of

convergence of the solution at the points P c Rh for problem 7.

4 __________________h
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Problem 7 Solution First derivative Second derivative

P F R* Max Max Max L
b LL2 L2

0.1 / 0.05 2.56 2.53 1.25 1.4o 0.95 1.11

0.05 / 0.025 2.76 2.74 1.61 1.63 0.97 1.32

0.025 / 0.0125 2.85 2.85 1.77 1.78 0.98 1.40

0.0125 / 0.00625 2.91 2.92 1.86 1.87 0.99 1.45

Figure 2.4 Problem 7. Convergence of boundary,

layer Rh using the quadratic boundary

approximation.

Improved convergence at the points P e R was again observed for

problems 4 (R5 z R6 z 2), 5 and 9, where R1 z R2 z 4, R3 z R4 z 3,

and R5 z R6 z 2.

Based on the numerical evidence, the discretization error estimates

given in Figure 2.5 are believed to be correct for smooth functions.

Solution First derivatives Second derivatives
Domain Max L2  Max L2  Max L2

R 2 2 2 2 1

R 3 3 2 2 1 1.5

Figure 2.5 Asymptotic behavior of discretization errors.

The entries in Figure 2.5 marked with a star correspond to estimates

that are sharp in Theorem 2.1. In addition, the estimate for the maximum

error in the solution over R is almost sharp. A specific numerical


